The pre-mRNA retention and splicing complex controls expression of the Mediator subunit Med20

نویسندگان

  • Yang Zhou
  • Marcus J. O. Johansson
چکیده

The heterotrimeric pre-mRNA retention and splicing (RES) complex, consisting of Bud13p, Snu17p and Pml1p, promotes splicing and nuclear retention of a subset of intron-containing pre-mRNAs. Yeast cells deleted for individual RES genes show growth defects that are exacerbated at elevated temperatures. Although the growth phenotypes correlate to the splicing defects in the individual mutants, the underlying mechanism is unknown. Here, we show that the temperature sensitive (Ts) growth phenotype of bud13Δ and snu17Δ cells is a consequence of inefficient splicing of MED20 pre-mRNA, which codes for a subunit of the Mediator complex; a co-regulator of RNA polymerase II transcription. The MED20 pre-mRNA splicing defect is less pronounced in pml1Δ cells, explaining why they grow better than the other 2 RES mutants at elevated temperatures. Inactivation of the cytoplasmic nonsense-mediated mRNA decay (NMD) pathway in the RES mutants leads to accumulation of MED20 pre-mRNA, indicating that inefficient nuclear retention contributes to the growth defect. Further, the Ts phenotype of bud13Δ and snu17Δ cells is partially suppressed by the inactivation of NMD, showing that the growth defects are augmented by the presence of a functional NMD pathway. Collectively, our results demonstrate an important role of the RES complex in maintaining the Med20p levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression

The conserved pre-mRNA retention and splicing (RES) complex, which in yeast consists of Bud13p, Snu17p and Pml1p, is thought to promote nuclear retention of unspliced pre-mRNAs and enhance splicing of a subset of transcripts. Here, we find that the absence of Bud13p or Snu17p causes greatly reduced levels of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA and that a lack of Pml1p r...

متن کامل

Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing.

Using the proteomic tandem affinity purification (TAP) method, we have purified the Saccharomyces cerevisie U2 snRNP-associated splicing factors SF3a and SF3b. While SF3a purification revealed only the expected subunits Prp9p, Prp11p and Prp21p, yeast SF3b was found to contain only six subunits, including previously known components (Rse1p, Hsh155p, Cus1p, Hsh49p), the recently identified Rds3p...

متن کامل

A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention.

In the yeast Saccharomyces cerevisiae, Mer1p is expressed only during meiosis, and its expression is linked to the splicing of at least three mRNAs: MER2, MER3, and AMA1. Previous evidence suggests that Mer1p activates splicing by directly recruiting snRNPs or stabilizing intermediate splicing complexes formed on pre-mRNA that contains an intronic Mer1p enhancer element. However, some splicing ...

متن کامل

Genetic Interactions of MAF1 Identify a Role for Med20 in Transcriptional Repression of Ribosomal Protein Genes

Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol) III in Saccharomyces cerevisiae. Here we identify the functio...

متن کامل

Faithful mRNA splicing depends on the Prp19 complex subunit faint sausage and is required for tracheal branching morphogenesis in Drosophila.

Morphogenesis requires the dynamic regulation of gene expression, including transcription, mRNA maturation and translation. Dysfunction of the general mRNA splicing machinery can cause surprisingly specific cellular phenotypes, but the basis for these effects is not clear. Here, we show that the Drosophila faint sausage (fas) locus, which is implicated in epithelial morphogenesis and has previo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017